114 research outputs found

    Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics

    Get PDF
    This study numerically investigates the enhancement of photonic microwave generation using an optically injected semiconductor laser operating at period-one (P1) nonlinear dynamics through ultrashort optical feedback. For the purpose of practical applications where system miniaturization is generally preferred, a feedback delay time that is one to two orders of magnitude shorter than the relaxation resonance period of a typical laser is emphasized. Various dynamical states that are more complicated than the P1 dynamics can be excited under a number of ultrashort optical feedback conditions. Within the range of the P1 dynamics, on one hand, the frequency of the P1 microwave oscillation can be greatly enhanced by up to more than three folds. Generally speaking, the microwave frequency enhances with the optical feedback power and phase, while it varies saw-wise with the optical feedback delay time. On the other hand, the purity of the P1 microwave oscillation can be highly improved by up to more than three orders of magnitude. In general, the microwave purity improves with the optical feedback power and delay time, while it only varies within an order of magnitude with the optical feedback phase. These results suggest that the ultrashort optical feedback provides the optically injected laser system with an extra degree of freedom to manipulate/improve the characteristics of the P1 microwave oscillation without changing the optical injection condition

    Overview of self-mixing interferometer applications to mechanical engineering

    Get PDF
    We present an overview of the applications of self-mixing interferometer (SMI) to tasks of interest for mechanical engineering, namely high-resolution measurement of linear displacements, measurements of angles (tilt, yaw, and roll), measurements of subnanometer vibrations, and absolute distance, all on a remote target-representative of the tool-carrying turret of a tool-machine. Along with the advantages of SMI-compactness, low cost, minimum invasiveness, ease of use, and good accuracy, we illustrate the typical performance achieved by the basic SMI sensors, that is, the versions requiring a minimum of signal processing and discuss special features and problems of each approach

    Metagenomes in the Borderline Ecosystems of the Antarctic Cryptoendolithic Communities.

    Get PDF
    Antarctic cryptoendolithic communities are microbial ecosystems dwelling inside rocks of the Antarctic desert. We present the first 18 shotgun metagenomes from these communities to further characterize their composition, biodiversity, functionality, and adaptation. Future studies will integrate taxonomic and functional annotations to examine the pathways necessary for life to evolve in the extremes

    Pre-Cambrian roots of novel Antarctic cryptoendolithic bacterial lineages

    Get PDF
    8openInternationalBothBackground Cryptoendolithic communities are microbial ecosystems dwelling inside porous rocks that are able to persist at the edge of the biological potential for life in the ice-free areas of the Antarctic desert. These regions include the McMurdo Dry Valleys, often accounted as the closest terrestrial counterpart of the Martian environment and thought to be devoid of life until the discovery of these cryptic life-forms. Despite their interest as a model for the early colonization by living organisms of terrestrial ecosystems and for adaptation to extreme conditions of stress, little is known about the evolution, diversity, and genetic makeup of bacterial species that reside in these environments. Using the Illumina Novaseq platform, we generated the first metagenomes from rocks collected in Continental Antarctica over a distance of about 350 km along an altitudinal transect from 834 up to 3100 m above sea level (a.s.l.). Results A total of 497 draft bacterial genome sequences were assembled and clustered into 269 candidate species that lack a representative genome in public databases. Actinobacteria represent the most abundant phylum, followed by Chloroflexi and Proteobacteria. The “Candidatus Jiangella antarctica” has been recorded across all samples, suggesting a high adaptation and specialization of this species to the harshest Antarctic desert environment. The majority of these new species belong to monophyletic bacterial clades that diverged from related taxa in a range from 1.2 billion to 410 Ma and are functionally distinct from known related taxa. Conclusions Our findings significantly increase the repertoire of genomic data for several taxa and, to date, represent the first example of bacterial genomes recovered from endolithic communities. Their ancient origin seems to not be related to the geological history of the continent, rather they may represent evolutionary remnants of pristine clades that evolved across the Tonian glaciation. These unique genomic resources will underpin future studies on the structure, evolution, and function of these ecosystems at the edge of life.openAlbanese, Davide; Coleine, Claudia; Rota-Stabelli, Omar; Onofri, Silvano; Tringe, Susannah G; Stajich, Jason E; Selbmann, Laura; Donati, ClaudioAlbanese, D.; Coleine, C.; Rota-Stabelli, O.; Onofri, S.; Tringe, S.G.; Stajich, J.E.; Selbmann, L.; Donati, C

    A 180-nm CMOS Time-of-Flight 3-D Image Sensor

    Get PDF
    Abstract-We report on the design and the experimental characterization of a new 3-D image sensor, based on a new 120-nm CMOS-compatible photo-detector, which features an internal demodulation mechanism effective up to high frequencies. The distance range covered by our proof-of-concept device spans from 1-m to a few meter, and the resolution is about 1-cm

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System

    Vibration Measurements by Self-Mixing Interferometry: An Overview of Configurations and Benchmark Performances

    No full text
    Self-mixing interferometry (SMI) is suitable to sense and measure vibrations of amplitudes ranging from picometers to millimeters at frequencies from sub-Hz to MHz’s. As an optical probe, SMI has the advantage of being non-invasive with the ability to measure without any treatment of the target surface and operate from a substantial standoff distance from the target. As an additional advantage, the SMI configuration is much simpler than that of conventional interferometers as it does not require any optical part external to the laser source. After a short introduction to the basics of SMI, we review the development of configurations of SMI instruments for vibration measurements, based on both analog and digital processing, with record performance to cover the range of vibration amplitudes from 0.1 nm to 1 mm, frequencies up to MHz, and stand-off distances up to 100 m. These performances set a benchmark that is unequaled by other approaches reported so far in the literature. The configurations we describe are (i) a simple MEMS-response testing instrument based on fringe counting, (ii) a half-fringe locking vibrometer for mechanical mode analysis and transfer function measurements, with a wide linear response on six decades of amplitude, (iii) a vibrometer with analog switching cancellation for ÎŒm-to-mm amplitude of vibrations, and (iv) a long standoff distance vibrometer for testing large structures at distances up to 100 m and with nm sensitivity. Lastly, as the vibrometer will almost invariably operate on untreated, diffusing surfaces, we provide an evaluation of phase-induced speckle pattern errors affecting the SMI measurement
    • 

    corecore